C/C++知识点之1 数据结构(13)_二叉树的概念及常用操作实现
小标 2019-04-01 来源 : 阅读 952 评论 0

摘要:本文主要向大家介绍了C/C++知识点之1 数据结构(13)_二叉树的概念及常用操作实现,通过具体的内容向大家展示,希望对大家学习C/C++知识点有所帮助。

本文主要向大家介绍了C/C++知识点之1 数据结构(13)_二叉树的概念及常用操作实现,通过具体的内容向大家展示,希望对大家学习C/C++知识点有所帮助。

C/C++知识点之1 数据结构(13)_二叉树的概念及常用操作实现

1. 树到二叉树的转换


思考:通用树结构的实现太过复杂(树中每个结点都可以有任意多的孩子,具有多种形态),工程中很少会用到如此复杂的树是否可以简化呢?
思路:减少树结点中孩子的数量。但这样树是否还能通用呢?


1.1.树的两种表示法


双亲孩子表示法:

孩子兄弟表示法:

孩子兄弟表示法的特点:
1.能够表示任意的树形结构
2.每个结点包含一个数据成员和两个指针成员
3.孩子结点指针和兄弟结点指针构成“树杈”


2.2.二叉树


二叉树是由n(n>=0)个节点组成的有限集合,该集合或者为空,或者是由一个根结点加上两颗分别称为左子树和右子树的、互不相交的二叉树组成。

满二叉树:
如果二叉树中所有分支结点的度数都为2,且叶子结点都在同一层次上,则称这类二叉树为满二叉树。
完全二叉树:
如果一棵具有N个结点高度为K的二叉树,它的每一个结点与高度为K的满二叉树中编号1~n的结点一一对应,则称这颗二叉树为完全二叉树。(从上到下,从左到右编号)。
完全二叉树的特性:
同样结点的二叉树,完全二叉树的高度最小;完全二叉树的叶结点一定出现在最下面两层。
1.最底层的叶结点一定出现在左边;
2.倒数第二层的叶结点一定出现在右边;
3.完全二叉树中度数为1的结点只有左孩子。

总结:
1.通用树结构采用了双亲结点表示法进行描述;
2.孩子兄弟表示法也有能力描述任意类型的树结构;
3.孩子兄弟表示法能够将通用树转化为二叉树(最多有两个孩子);


2.二叉树的深层特性


1.在二叉树的第i层最多有2^(i-1)个结点(i>=1);
2.高度为K的二叉树最多有2^k - 1个结点(K>=0);
3.对于任何一颗二叉树,如果其叶结点有n0个,度为2的非叶结点有n2个,则有n0 = n2 + 1;
推导证明:



  • 假设二叉树中为1的结点有n1个,总结点数为n,则:n = n0 + n1 + n2;


  • 假设二叉树中连接父子结点的边为e条,则: e = n1 + 2n2 (从上往下看,有一条边的结点+有两条边的结点),同时从下往上看e = n-1(根结点之上没有与之相连的边),故:



  • n1 + 2n2 = n-1 ==> n1 + 2n2 = n0 + n1 + n2 - 1 ==> n0 = n2 + 1
    4.具有n个结点的完全二叉树的告诉为【log2N】 + 1 (【x】表示不大于x的最大整数)

    5.


    3.二叉树的存储结构设计


    目标:完成二叉树和二叉树结点的存储设计;

    设计要点:
    1.BTree为二叉树,每个结点最多只有两个后继结点;
    2.BTreeNode只包含4个固有的公有成员:(数据成员、指向左孩子和右孩子的指针、指向父节点的指针)
    BTreeNode的设计
    直接继承自抽象树结点,使用工厂模式(标识使用的堆空间,方便使用智能指针进行释放)。


    template < typename T >
    class BTreeNode : public TreeNode<T>
    {
    public:
    BTreeNode<T>* left;
    BTreeNode<T>* right;

    static BTreeNode<T>* NewNode()
    {
        BTreeNode<T>* ret = new BTreeNode<T>();

        if(ret != NULL)
        {
            ret->m_flag = true;  //在堆空间中申请了结点,则将该标识置为true
        }

        return ret;
    }

    ~BTreeNode(){}
    };


    BTree的设计
    继承自抽象树结构,并组合使用BTreeNode.


template < typename T >
class BTree : public Tree<T>
{

};


二叉树的实现架构:

4. 二叉树的常用操作


4.1 .二叉树的查找操作


1.基于数据元素值的查找:
BTreeNode<T>* find(const T& value) const

    virtual BTreeNode<T>* find(BTreeNode<T>* node, const T& value) const
    {
        BTreeNode<T>* ret = NULL;

        if(node != NULL)    // 判断是否为空树
        {
            if(node->value == value)    //比较根结点
            {
                ret = node;
            }
            else
            {
                if(ret == NULL)
                {
                    //递归查找左子树
                    ret = find(node->m_left, value);
                }

                if(ret == NULL)
                {
                    //递归查找右子树
                    ret = find(node->m_right, value);
                }
            }
        }

        return ret;
    }

        BTreeNode<T>* find(const T& value) const
    {
        return find(root(), value);
    }


2.基于结点的查找:
BTreeNode<T> find(TreeNode<T> node) const

        virtual BTreeNode<T>* find(BTreeNode<T>* node, BTreeNode<T>* obj) const
    {
        BTreeNode<T>* ret = NULL;

        if(node != NULL)    // 判断是否为空树
        {
            if(node == obj)    //比较根结点
            {
                ret = node;
            }
            else
            {
                if(ret == NULL)
                {
                    //递归查找左子树
                    ret = find(node->m_left, obj);
                }

                if(ret == NULL)
                {
                    //递归查找右子树
                    ret = find(node->m_right, obj);
                }
            }
        }

        return ret;
    }

        BTreeNode<T>* find(TreeNode<T>* node) const
    {
        return find(root(), dynamic_cast<BTreeNode<T>*>(node));
    }


4.2.二叉树的插入操作


思考:是否能在二叉树的任意结点处插入子结点?
因为二叉树的定义中,每个结点最多只能有两个子结点,所以必然不能在任意结点处插入,因此需要制定新的数据元素(新结点)的插入位置。
二叉树结点的位置定义:


enum BTreeNodePos
{
    ANY,
    LEFT,
    RIGHT
};


1.定义功能函数,指定位置的结点插入:
virtual bool insert(BTreeNode&lt;T&gt;* newnode, BTreeNode&lt;T&gt;* node, BTNodePos pos)

    virtual bool insert(BTreeNode<T>* n, BTreeNode<T>* np, BTreeNodePos pos)
    {
        bool ret = true;

        //指定的插入位置为ANY(没有指定插入位置)
        if(pos == ANY)
        {
            if(np->m_left == NULL)    // 左子树结点为空,插入到左子树
            {
                np->m_left = n;
            }
            else if(np->m_right == NULL)  // ...
            {
                np->m_right = n;
            }
            else
            {
                ret = false;
            }
        }

        // 指定插入到左孩子结点
        if(pos == LEFT)
        {
            if(np->m_left == NULL)
            {
                np->m_left = n;
            }
            else
            {
                ret = false;
            }
        }

        // 指定插入到右孩子结点
        if(pos == RIGHT)
        {
            if(np->m_right == NULL)
            {
                np->m_right = n;
            }
            else
            {
                ret = false;
            }
        }

        return ret;
    }


2.插入新结点


bool insert(TreeNode<T>* node, BTreeNodePos pos)
bool insert(TreeNode<T>* node)


     

    //插入结点,并指定位置
    bool insert(TreeNode<T>* node, BTreeNodePos pos)
    {
        bool ret = true;

        if(node != NULL)
        {
            if(root() == NULL)   //判断根结点处是否可以插入
            {
                node->m_parent = NULL;
                this->m_root = node;
            }
            else
            {
                BTreeNode<T>* np  = find(node->m_parent);   //查找父节点是否存在

                if(np != NULL)
                {
                    // 调用二叉树插入操作功能函数
                    ret = insert(dynamic_cast<BTreeNode<T>*>(node), np, pos);
                }
                else
                {
                    THROW_EXCEPTION(InvaildParameterException, "invalid parent tree node...");
                }
            }
        }
        else
        {
            THROW_EXCEPTION(InvaildParameterException, "param con't be NULL...");
        }

        return ret;
    }

    //插入结点,无位置要求
    bool insert(TreeNode<T>* node)
    {
        return insert(node, ANY);
    }


3.插入数据元素     


bool insert(const T& value,TreeNode<T>* parent, BTreeNodePos pos)
bool insert(const T& value,TreeNode<T>* parent)


    //插入数据元素,指定位置
    bool insert(const T& value,TreeNode<T>* parent, BTreeNodePos pos)
    {
        bool ret = true;

        BTreeNode<T>* node = BTreeNode<T>::NewNode();

        if(node != NULL)
        {
            node->value = value;
            node->m_parent = parent;

            insert(node, pos);
        }
        else
        {
            THROW_EXCEPTION(NoEnoughMemoryException, "no memory to create new tree node...");
        }

        return ret;
    }

    bool insert(const T& value,TreeNode<T>* parent)
    {
        return insert(value, parent, ANY);
    }


测试技巧:从叶结点到根结点为线性数据结构,可以使用链表的遍历方式。
总结:
1.二叉树的插入操作需要指明插入的位置;
2.插入操作必须正确处理指向父节点的指针
3.插入数据元素时需要从堆空间中创建结点,让数据元素插入失败时,需要释放结点空间。


4.3. 二叉树中结点的删除与清除


4.3.1.结点删除操作


1.删除操作功能定义
void remove(BTreeNode<T> node, BTree<T>& ret)
将node为根结点的子树从原来的二叉树中删除,ret作为子树返回(ret指向堆空间中的二叉树对象)

    virtual void remove(BTreeNode<T>* node, BTree<T>*& ret)
    {
        ret = new BTree();

        if(ret != NULL)
        {
            if(root() == node)
            {
                this->m_root = NULL;
            }
            else
            {
                BTreeNode<T>* np = dynamic_cast<BTreeNode<T>*>(node->m_parent);

                if(np->m_left == node)
                {
                    np->m_left = NULL;
                }
                else if(np->m_right == node)
                {
                    np->m_right = NULL;
                }

                node->m_parent = NULL;
            }

            ret->m_root = node;
        }
        else
        {
            THROW_EXCEPTION(NoEnoughMemoryException, "no memory to create new tree...");
        }
    }


2.基于数据元素的删除
SharedPointer< Tree<T> > remove(const T& value)


    SharedPointer< Tree<T> > remove(const T& value)
    {
        BTree<T>* ret = NULL;
        BTreeNode<T>* node = find(value);

        if(node != NULL)
        {
            remove(node, ret);
            m_queue.clear();
        }

        return ret;
    }


3.基于结点的删除
SharedPointer< Tree<T> > remove(TreeNode<T>* node)


    SharedPointer< Tree<T> > remove(TreeNode<T>* node)
    {
        BTree<T>* ret = NULL;
        node = find(node);

        if(node != NULL)
        {
            remove(dynamic_cast<BTreeNode<T>*>(node), ret);
            m_queue.clear();
        }

        return ret;
    }


测试技巧:直接打印已经删除的子树。
总结:
删除操作将目标界定啊所在的子树移除,必须完善处理父子结点的关系


4.3.2.结点清除操作


void clear()        // 将二叉树中的所有节点清除(释放堆中的结点)

1.清除操作功能定义
free(node)  // 清除node为根结点的二叉树,释放二叉树中的每个结点

    // 清空树的功能函数定义
    void free(BTreeNode<T>* node)
    {
        if(node != NULL)
        {
            free(node->m_left);
            free(node->m_right);

            //cout << node->value << endl;
            if(node->flag())
            {
                delete node;
            }
        }
    }

    void clear()
    {
        free(root());
        this->m_root = NULL;
    }


测试技巧:可以在free函数中打印删除的每一个结点
总结:
清除操作用于销毁树中的每个结点,销毁时要判断是否释放对应的内存空间(工厂模式)。


4.4.二叉树的属性操作实现


4.4.1.二叉树的结点数目


定义功能函数:cout(node)       // 在node为根结点的二叉树中递归统计结点数目

    // 获取树的结点个数,递归实现
    int count(BTreeNode<T>* node) const
    {
        int ret = 0;

        if(node != NULL)
        {
            // 左子树的结点个数 + 右子树的结点个数 + 1(根结点)
            ret = count(node->m_left) + count(node->m_right) + 1;
        }

        return ret;
    }

    int count() const
    {
        return  count(root());
    }


4.4.2.二叉树的高度


定义功能函数:height(node) // 递归获取node为根结点的二叉树的高度

    // 获取树的结点个数,递归实现
    int height(BTreeNode<T>* node) const
    {
        int ret = 0;

        if(node != NULL)
        {
            int hl = height(node->m_left);
            int hr = height(node->m_right);

            // 左右子树高度的最大值 + 1(根结点)
            ret = ((hl > hr) ? hl : hr) + 1;
        }

        return ret;
    }

    int height() const
    {
        return  height(root());
    }


4.4.3.二叉树的度数


定义功能函数:degree(node)     // 获取node为根结点的二叉树的度数

    // 获取二叉树的度,递归实现
    int degree(BTreeNode<T>* node) const
    {
        int ret = 0;

        if(node != NULL)
        {
        /*
         // 普通思路
            int dl = degree(node->m_left);  // 左子树的度
            int dr = degree(node->m_right); // 右子树的度
            ret = !!node->m_left + !!node->m_right;     //根结点的度

            if(dl > ret)
            {
                ret = dl;
            }
            else if(dr > ret)
            {
                ret = dr;
            }
        */
        /*
         * 优化效率,二叉树的最大度数为2,如果ret已经为2,则不需要继续遍历
            ret = !!node->m_left + !!node->m_right;     //根结点的度
            if(ret < 2)
            {
                int dl = degree(node->m_left);  // 左子树的度
                if(dl > ret)
                {
                    ret = dl;
                }

            }

            if(ret < 2)
            {
                int dr = degree(node->m_right);  // 左子树的度
                if(dr > ret)
                {
                    ret = dr;
                }

            }
        */

            // 优化冗余代码
            ret = !!node->m_left + !!node->m_right;     //根结点的度
            BTreeNode<T>* child[] = {node->m_left, node->m_right};

            for(int i=0; i<2 && ret<2; i++)
            {
                int d = degree(child[i]);
                if(d > ret)
                {
                    ret = d;
                }
            }
        }

        return ret;
    }

    int degree() const
    {
        return degree(root());
    }


4.5.二叉树的层次遍历


二叉树的遍历是指从根结点出发,按照某种次序依次访问二叉树中的所有节点,使得每个结点被访问一次。
思考:通用树结构的层次遍历算法是否可以用在二叉树结构上?如果可以需要做什么改动?
不同之处在于二叉树最多只有两个孩子。
设计思路:
在树中定义一个新游标(BTreeNode<T>*),遍历开始将游标指向根结点(root()),获取游标指向的数据元素,通过结点中的child成员移动游标;
提供一组遍历相关的函数,按层次访问树中的数据元素。

层次遍历算法:
原料:class LinkQueue<T>;  游标:LinkQueue<T>::front();
思想:



  • begin()   将根结点压人队列中


  • current() 访问队头指向的数据元素


  • next()        队头元素弹出,将队头元素的孩子(左孩子、右孩子)压入队列中(核心)



  • end()     判断队列是否为空


    bool begin()
    {
        bool ret = (root() != NULL);

        if(ret)
        {
            m_queue.clear();
            m_queue.enqueue(root());    //把根结点压入队里
        }

        return ret;
    }

    bool end()
    {
        return (m_queue.length() == 0);
    }

    bool next()
    {
        bool ret = (m_queue.length() > 0);

        if(ret)
        {
            BTreeNode<T>* node = m_queue.front();
            m_queue.dequeue();

            // 二叉树的左右孩子入队列
            if(node->m_left != NULL)
            {
                m_queue.enqueue(node->m_left);
            }
            if(node->m_right != NULL)
            {
                m_queue.enqueue(node->m_right);
            }
        }

        return ret;
    }

    // 获取游标所执行的元素
    T current()

本文由职坐标整理并发布,希望对同学们有所帮助。了解更多详情请关注职坐标编程语言C/C+频道!

本文由 @小标 发布于职坐标。未经许可,禁止转载。
喜欢 | 0 不喜欢 | 0
看完这篇文章有何感觉?已经有0人表态,0%的人喜欢 快给朋友分享吧~
评论(0)
后参与评论

您输入的评论内容中包含违禁敏感词

我知道了

助您圆梦职场 匹配合适岗位
验证码手机号,获得海同独家IT培训资料
选择就业方向:
人工智能物联网
大数据开发/分析
人工智能Python
Java全栈开发
WEB前端+H5

请输入正确的手机号码

请输入正确的验证码

获取验证码

您今天的短信下发次数太多了,明天再试试吧!

提交

我们会在第一时间安排职业规划师联系您!

您也可以联系我们的职业规划师咨询:

小职老师的微信号:z_zhizuobiao
小职老师的微信号:z_zhizuobiao

版权所有 职坐标-一站式IT培训就业服务领导者 沪ICP备13042190号-4
上海海同信息科技有限公司 Copyright ©2015 www.zhizuobiao.com,All Rights Reserved.
 沪公网安备 31011502005948号    

©2015 www.zhizuobiao.com All Rights Reserved

208小时内训课程